Examen

Section: MRMa.2

Épreuve de : Introduction au calcul stochastique

Nature de l'épreuve : D.C. \square E.F. \boxtimes	Documents:	autorisés	non autorisés	\boxtimes
Date de l'épreuve : 06/01/2016	Calculatrice:	autorisée	non autorisée	\boxtimes
Durée de l'épreuve : 03 Heure	Session:	principale $oxtimes$	contrôle	

Dans toute la suite, $(\Omega, \mathcal{A}, \mathcal{F}_n, \mathbb{P})$ désignera un espace de probabilité filtré.

Exercice 1: (07 pts) A- Soit X une variable aléatoire à valeurs dans \mathbb{N} vérifiant: $\forall k \geq 1$,

$$\mathbb{P}[X \ge k] = p^{k-1}; \ 0$$

et Y une variable aléatoire réelle telle que

$$\mathbb{E}[1_{\{Y>t\}}|X] = e^{-tX}; \ t \in \mathbb{R}_+^*.$$

- 1. Déterminer la loi de X
- 2. Montrer que la v.a. Y admet une densité que l'on déterminera.

B- Soit X une v.a. de loi normale centrée réduite, donner $\mathbb{E}[X^3|X^2]$.

C- On supposera que $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Soit T un temps d'arrêt vérifiant: ils existent $N \in \mathbb{N}$ et $\epsilon > 0$ tels que pour tout $n \geq 0$;

$$P(T \le n + N | \mathcal{F}_n) > \epsilon \mathbb{P} - p.s.$$

- 1. Montrer que pour tout $k \ge 1$; $P(T > kN) \le (1 \epsilon)^k$. Ind. On pourra utiliser le fait que P(T > kN) = P(T > kN; T > (k - 1)N)
- 2. En déduire que $\mathbb{E}(T) < \infty$.

Exercice 2: (6 pts) A- Soientt $X = (X_n)_{n\geq 0}$ et $Y = (Y_n)_{n\geq 0}$ deux \mathcal{F}_n -martingales et τ un \mathcal{F}_n -temps d'arrêt fini p.s. On définit le processus $U = (U_n)_{n\geq 0}$ par

$$U_n = X_n 1_{\{\tau \ge n\}} + Y_n 1_{\{\tau < n\}}.$$

1. Montrer que si $X_{\tau} = Y_{\tau} \mathbb{P} - p.s$ alors U est une \mathcal{F}_n -martingale.

2. Montrer que si $\mathbb{P}(X_{\tau} = Y_{\tau}) < 1$ alors il existe $n \geq 0$ tel que

$$\mathbb{P}(\{X_n \neq Y_n\} \cap \{\tau = n\}) > 0.$$

3. En déduire que si U est une martingale alors $X_{\tau} = Y_{\tau} \mathbb{P}$ -p.s.

B- Soit $X = (X_n)_{n\geq 1}$ une suite de v.a. i.i.d de loi Bernoulli de paramètre $\frac{1}{2}$, $S_n = X_1 + ... + X_n$, $n \geq 1$, $\mathcal{F}_n^0 = \sigma(X_1, ..., X_n)$ et $\nu = \inf\{n \geq 1; S_n = 1\}$. Peut on appliquer le théorème d'arrêt des martingales dans ce cas? Pourquoi?

Exercice 3 : (07 pts) Soit $X = (X_n)_{n \ge 1}$ une chaine de Markov sur un ensemble dénombrable E de loi initiale μ et de matrice de tansition T et \mathcal{F}_n^0 sa filtration naturelle. Posons pour $x \in E$, $\mathbb{P}^x[B] = \mathbb{P}[B|X_0 = x]$, pour tout évenement B.

1. Montrer que pour touts $A \in \mathcal{F}_n^0$; $m \ge 1$ et $x_1, ..., x_m \in E$, on a:

$$\mathbb{P}[A \cap \{X_{n+1} = x_1; ...; X_{n+m} = x_m\} | X_n = x] = \mathbb{P}[A | X_n = x] \mathbb{P}^x [X_1 = x_1; ...; X_m = x_m]$$

2. Soit τ un \mathcal{F}_n^0 -temps d'arret; Montrer que pour touts $A \in \mathcal{F}_{\tau}$; $m \geq 1$ et $x_1, ..., x_m \in E$, on a:

$$\mathbb{P}[A \cap \{X_{\tau+1} = x_1; ...; \ X_{\tau+m} = x_m\} | D_x^{\tau}] = \mathbb{P}[A|D_x^{\tau}] \, \mathbb{P}^x[X_1 = x_1; ...; \ X_m = x_m],$$

$$\text{avec } D_x^{\tau} = \{X_{\tau} = x\} \cap \{\tau < \infty\}.$$

- 3. Soient $\tau_x^1 = \inf\{n \ge 1; \ X_n = x\}$ (on le notera τ_x pour simplifier); $N_x = \{\sum_{n \ge 1} 1_{\{X_n = x\}}\}$ et pour tout $k \ge 2; \ \tau_x^k = \inf\{n > \tau_x^{k-1}; \ X_n = x\}.$
 - a- Les v.a. τ_x^k ; $k \ge 2$ sont elles des temps d'arret?
 - **b-** Montrer que $\mathbb{P}^x[\tau_x^2 = \tau_x + n | \tau_x < \infty] = \mathbb{P}^x[\tau_x = n]$
 - c- En déduire que $\mathbb{P}^x[\tau_x^2 < \infty] = \mathbb{P}^x[\tau_x < \infty]^2$
- 4. a- Montrer que pour $k \geq 2$; $\mathbb{P}^x[N_x \geq k] = \mathbb{P}^x[\tau_x < \infty]^k$
 - **b-** En déduire que si $\tau_x < \infty$; $\mathbb{P}^x p.s.$ alors $N_x = \infty$; $\mathbb{P}^x p.s.$

Bon Travail