Diploma: Fundamental License in Chemistry

Level: 3rd Year Student

Course designer: Mrs. Sonia ASLI

Academic Year 2013 – 2014
Table of content

CHAPTER I: LABORATORY ... 3
 TEXT 1: LABORATORY .. 3
 Skills:
 ☐ Vocabulary
 ☐ Translation
 ☐ Grammar: PREPOSITIONS
 ☐ Writing: WRITING AN INFORMAL LETTER
 TEXT 2: LAB SAFETY .. 8
 Skills:
 ☐ Grammar: QUANTIFIERS
 ☐ Writing: WRITING A FORMAL LETTER
 TEXT 3: INTRODUCTION TO CHEMISTRY ... 16
 Skills:
 ☐ Reading Comprehension

CHAPTER II: CHEMISTRY BASICS .. 18
 TEXT 1: WHY DOES MATTER MATTER? ... 18
 Skills:
 ☐ Reading Comprehension
 ☐ Grammar: GERUND VS INFINITIVE
 ☐ Translation
 TEXT 2: BASIC MATHEMATICAL SYMBOLS 24
 TEXT 3: ATOMS AND MOLECULES ... 27
 Skills:
 ☐ Reading Comprehension
 ☐ Writing: WRITING CV

CHAPTER III: ATOMS AND ELEMENTS ... 33
 TEXT 1: ATOMS AND ELEMENTS .. 33
 Skills:
 ☐ Reading Comprehension
 ☐ Grammar: AFFIXES
 TEXT 2: AN ATOM APART .. 38
 Skills:
 ☐ Reading comprehension
 ☐ Translation
 TEXT 3: CHEMICAL ELEMENTS ... 42
 Skills:
 ☐ Reading Comprehension
 ☐ Grammar: CAUSE AND EFFECT LINKING WORDS

CHAPTER IV: CHEMISTRY IN ITS ELEMENTS 48
 TEXT 1: ETHANOL .. 48
 Skills:
 ☐ Reading comprehension
 ☐ Writing: MAKING SUMMARY
 TEXT 2: SALT .. 52
 Skills:
Reading comprehension
Translation
TEXT 3: CAN DESALINATION SOLVE THE PROBLEM OF WATER SHORTAGE

Skills:
Reading comprehension
Writing: MAKING PRESENTATION
Chapter 1: LABORATORY

Do you know the names of any items you can see below and which can be found in a common chemical laboratory? Fill in the blanks with the words from the list below:

1. [Image] ___________ are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations.

2. [Image] ___________ are sources of heat.

3. [Image] ___________ are for addition of a precise volume of liquid. The volume of liquid added can be determined to the nearest 0.01 mL with practice.

4. [Image] ___________ are placed on a ring attached to a ring stand as a support for a funnel, crucible, or evaporating dish.

5. [Image] ___________ are for addition of liquids drop by drop

6. [Image] ___________ are useful to contain reactions or to hold liquid samples. They are also useful to catch filtrates.

7. [Image] ___________ are for funneling liquids from one container to another or for filtering when equipped with filter paper.

8. [Image] ___________ are for measurement of an amount of liquid. The volume of liquid can be estimated to the nearest 0.1 mL with practice.
9. **Pipettes** are used to dispense small quantities of liquids.

10. **Test tube holders** with rings or clamps are for holding pieces of glassware in place.

11. **Test tube racks** are for holding small samples or for containing small-scale reactions.

12. **Test tube racks** are for holding test tubes when tubes should not be touched.

13. **Test tube holders** are similar in function to forceps but are useful for larger items.

14. **Graduated cylinders** are used to measure precise volumes of liquid or to make precise dilutions.

15. **Dispensers** are used for dispensing small quantities of distilled water.

16. **Erlenmeyer flasks** are for holding small samples or for covering beakers or evaporating dishes.

17. **Bunsen burner stands** on a ring supports beakers to be heated by Bunsen burners.
When you're doing experiments that involve using harmful chemicals or fire, you need__________ to protect your eyes.

__________ and _____________ is predominantly used to crush and blend substances together.

Match the following verbs in column A with the nouns in column B.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To evaporate</td>
<td>a. Your eyes</td>
<td>1. + ...</td>
</tr>
<tr>
<td>2. To pour</td>
<td>b. A glass vessel</td>
<td>2. + ...</td>
</tr>
<tr>
<td>3. To measure</td>
<td>c. Electricity</td>
<td>3. + ...</td>
</tr>
<tr>
<td>4. To separate</td>
<td>d. Some water</td>
<td>4. + ...</td>
</tr>
<tr>
<td>5. To protect</td>
<td>e. A liquid into a container</td>
<td>5. + ...</td>
</tr>
<tr>
<td>6. To collect</td>
<td>f. Gases inside</td>
<td>6. + ...</td>
</tr>
<tr>
<td>7. To conduct</td>
<td>g. Chemicals</td>
<td>7. + ...</td>
</tr>
<tr>
<td>8. To support</td>
<td>h. The mass of an object</td>
<td>8. + ...</td>
</tr>
<tr>
<td>9. To scratch</td>
<td>i. A mixture</td>
<td>9. + ...</td>
</tr>
<tr>
<td>10. To transfer</td>
<td>j. The test tubes</td>
<td>10. + ...</td>
</tr>
</tbody>
</table>

Sort this laboratory equipment into the columns:

goggles lab tongs pestle cylinder spot plate
Petri dish thermometer balance funnel flask
polarography evaporating dish test tube beaker dissector
furnace stirring rod watch glass pipette centrifuge
crucible hydrometer ring clamp wire gauze
burner flint lighter wash bottle hood spatula
conductivity tester weighing paper filter paper

Glassware

Porcelain

Tools and Utilities

Apparatuses
TRANSLATION:

Translate into French the following items

<table>
<thead>
<tr>
<th>English</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lab tongs</td>
<td>pinces de laboratoire</td>
</tr>
</tbody>
</table>
| 2. Pestle | ..
| 3. Cylinder | ..
| 4. Spot plate | ..
| 5. Petri dish | ..
| 6. Thermometer | ..
| 7. Goggles | ..
| 8. Balance | ..
| 9. Funnel | ..
| 10. Flask | ..
| 11. Evaporating dish | ..
| 12. Polarography | ..
| 13. Beaker | ..
| 14. Dissector | ..
| 15. Furnace | ..
| 16. Stirring rod | ..
| 17. Test tube | ..
| 18. Watch glass | ..
| 19. Pipette | ..
| 20. Centrifuge | ..
| 21. Crucible | ..
| 22. Hydrometer | ..
| 23. Ring clamp | ..
| 24. Wire | ..
| 25. Gauze | ..
| 26. Burner | ..
| 27. Flint lighter | ..
| 28. Wash bottle | ..
| 29. Hood | ..
| 30. Spatula | ..
| 31. Conductivity tester | ..
| 32. Weighing paper | ..
| 33. Filter paper | ..

Prepositions – Time

<table>
<thead>
<tr>
<th>English</th>
<th>Usage</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>days of the week</td>
<td>on Monday</td>
</tr>
<tr>
<td>in</td>
<td>months / seasons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>time of day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>year</td>
<td></td>
</tr>
<tr>
<td></td>
<td>after a certain period of time (when?)</td>
<td></td>
</tr>
<tr>
<td>at</td>
<td>for night</td>
<td>at night</td>
</tr>
<tr>
<td></td>
<td>for weekend</td>
<td>at the weekend</td>
</tr>
<tr>
<td></td>
<td>a certain point of time (when?)</td>
<td>at half past nine</td>
</tr>
<tr>
<td>since</td>
<td>from a certain point of time (past till now)</td>
<td>since 1980</td>
</tr>
<tr>
<td>for</td>
<td>over a certain period of time (past till now)</td>
<td>for 2 years</td>
</tr>
<tr>
<td>ago</td>
<td>a certain time in the past</td>
<td>2 years ago</td>
</tr>
<tr>
<td>before</td>
<td>earlier than a certain point of time</td>
<td>before 2004</td>
</tr>
<tr>
<td>to</td>
<td>telling the time</td>
<td>ten to six (5:50)</td>
</tr>
<tr>
<td>past</td>
<td>telling the time</td>
<td>ten past six (6:10)</td>
</tr>
<tr>
<td>to / till / until</td>
<td>marking the beginning and end of a period of time</td>
<td>from Monday to/till Friday</td>
</tr>
<tr>
<td>till / until</td>
<td>in the sense of how long something is going to last</td>
<td>He is on holiday until Friday.</td>
</tr>
<tr>
<td>by</td>
<td>in the sense of at the latest</td>
<td>I will be back by 6 o’clock.</td>
</tr>
<tr>
<td>Preposition</td>
<td>Usage</td>
<td>Example</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>by, next to, beside</td>
<td>left or right of somebody or something</td>
<td>Jane is standing by / next to / beside the car.</td>
</tr>
<tr>
<td>under</td>
<td>on the ground, lower than (or covered by) something else</td>
<td>the bag is under the table</td>
</tr>
<tr>
<td>below</td>
<td>lower than something else but above ground</td>
<td>the fish are below the surface</td>
</tr>
<tr>
<td>over</td>
<td>covered by something else meaning more than getting to the other side (also across) overcoming an obstacle</td>
<td>put a jacket over your shirt over 16 years of age walk over the bridge climb over the wall</td>
</tr>
<tr>
<td>above</td>
<td>higher than something else, but not directly over it</td>
<td>a path above the lake</td>
</tr>
<tr>
<td>across</td>
<td>getting to the other side (also over) getting to the other side</td>
<td>walk across the bridge swim across the lake</td>
</tr>
<tr>
<td>through</td>
<td>something with limits on top, bottom and the sides</td>
<td>drive through the tunnel</td>
</tr>
<tr>
<td>to</td>
<td>movement to person or building movement to a place or country for bed</td>
<td>go to the cinema go to London / Ireland go to bed</td>
</tr>
<tr>
<td>into</td>
<td>enter a room / a building</td>
<td>go into the kitchen / the house</td>
</tr>
<tr>
<td>towards</td>
<td>movement in the direction of something (but not directly to it)</td>
<td>go 5 steps towards the house</td>
</tr>
<tr>
<td>onto</td>
<td>movement to the top of something</td>
<td>jump onto the table</td>
</tr>
<tr>
<td>from</td>
<td>in the sense of where from</td>
<td>a flower from the garden</td>
</tr>
</tbody>
</table>

Other important Prepositions

<table>
<thead>
<tr>
<th>Preposition</th>
<th>Usage</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td>who gave it</td>
<td>a present from Jane</td>
</tr>
<tr>
<td>of</td>
<td>who/what does it belong to what does it show</td>
<td>a page of the book the picture of a palace</td>
</tr>
<tr>
<td>by</td>
<td>who made it</td>
<td>a book by Mark Twain</td>
</tr>
<tr>
<td>on</td>
<td>walking or riding on horseback entering a public transport vehicle</td>
<td>on foot, on horseback get on the bus</td>
</tr>
<tr>
<td>in</td>
<td>entering a car / Taxi</td>
<td>get in the car</td>
</tr>
<tr>
<td>off</td>
<td>leaving a public transport vehicle</td>
<td>get off the train</td>
</tr>
<tr>
<td>out of</td>
<td>leaving a car / Taxi</td>
<td>get out of the taxi</td>
</tr>
<tr>
<td>by</td>
<td>rise or fall of something travelling</td>
<td>prices have risen by 10 percent by car, by bus</td>
</tr>
<tr>
<td>at</td>
<td>for age</td>
<td>she learned Russian at 45</td>
</tr>
<tr>
<td>about</td>
<td>for topics, meaning what about</td>
<td>we were talking about you</td>
</tr>
</tbody>
</table>
Chemistry experiments usually require a large number of chemicals and numerous pieces of equipment. It is important when writing a method that all the steps and equipment are included for safety and time management reasons.

Using any of the prepositions in the word bank above write at least 4 sentences describing the placement of each piece of equipment in the diagram. For example “The Bunsen is under the tripod” “the tripod sits under the beaker, but above the Bunsen”.
WRITING

Writing an informal letter

Look at the organization of this letter. We begin all letters with Dear…, your address, and the date; but not your name.

Dear Maria

I’m very pleased that we’re going to be penfriends.

I’ll tell you a little about myself, and you can do the same when you write to me.

I live in an area of London called Maida Vale. It’s quite near the centre, but there are parks nearby where I take my dog, Mickey, for a walk.

I live with my parents and my younger brother, Paul.

My father works for the post office and my mother has a part-time job as a nurse.

I go to the local comprehensive school, where I have a lot of friends. I like most subjects, but not all of them! In the evenings I sometimes visit friends or stay at home and listen to music, and at the weekends I like going swimming or horse-riding.

At the moment I’m working very hard because I have exams soon, so I’m spending a lot of time in the library!

I’m looking forward to hearing from you!

Write soon!

Best wishes

Francis Jones

Practice:
Write a similar letter to a pen friend in England. Your pen friend can be male or female.
Write about these things:
- You
- Where you live
- What you do
- What hobbies
- Your family
Lab Safety

Decide whether the following safety rules and recommendations are a GOOD/ BAD or even DANGEROUS piece of advice.

1. If you want to dilute sulphuric acid, pour water slowly into the acid.
2. For work with unpleasant or dangerous vapours plug your nose with cotton properly.
3. If any chemicals get in your eyes, flush them with running water and inform the teacher or colleague what happened.
4. In case of fire try to find some good shelter (e.g. under the sink) and wait.
5. If you want to warm some meal in the lab, don’t put it in the furnace together with any chemicals.

<table>
<thead>
<tr>
<th>Lab Safety Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL GUIDELINES</td>
</tr>
<tr>
<td>1. Conduct yourself in a responsible manner at all times in the laboratory.</td>
</tr>
<tr>
<td>2. Follow all written and verbal instructions carefully. If you do not understand a direction or part of a procedure, ASK YOUR TEACHER BEFORE PROCEEDING WITH THE ACTIVITY.</td>
</tr>
<tr>
<td>3. Never work alone in the laboratory. No student may work in the science classroom without the presence of the teacher.</td>
</tr>
<tr>
<td>4. When first entering a science room, do not touch any equipment, chemicals, or other materials in the laboratory area until you are instructed to do so.</td>
</tr>
<tr>
<td>5. Perform only those experiments authorized by your teacher. Carefully follow all instructions, both written and oral. Unauthorized experiments are not allowed.</td>
</tr>
<tr>
<td>6. Do not eat food, drink beverages, or chew gum in the laboratory. Do not use laboratory glassware as containers for food or beverages.</td>
</tr>
<tr>
<td>7. Be prepared for your work in the laboratory. Read all procedures thoroughly before entering the laboratory. Never fool around in the laboratory. Horseplay, practical jokes, and pranks are dangerous and prohibited.</td>
</tr>
<tr>
<td>8. Always work in a well-ventilated area.</td>
</tr>
<tr>
<td>9. Observe good housekeeping practices. Work areas should be kept clean and tidy at all times.</td>
</tr>
</tbody>
</table>
10. Be alert and proceed with caution at all times in the laboratory. Notify the teacher immediately of any unsafe conditions you observe.

11. Dispose of all chemical waste properly. Never mix chemicals in sink drains. Sinks are to be used only for water. Check with your teacher for disposal of chemicals and solutions.

12. Labels and equipment instructions must be read carefully before use. Set up and use the equipment as directed by your teacher.

13. Keep hands away from face, eyes, mouth, and body while using chemicals or lab equipment. Wash your hands with soap and water after performing all experiments.

CLOTHING

14. Experiments must be personally monitored at all times. Do not wander around the room, distract other students, startle other students or interfere with the laboratory experiments of others.

15. Know the locations and operating procedures of all safety equipment including: first aid kit(s), and fire extinguisher. Know where the fire alarm and the exits are located.

16. Know what to do if there is a fire drill during a laboratory period; containers must be closed, and any electrical equipment turned off.

17. Any time chemicals, heat, or glassware are used, students will wear safety goggles. NO EXCEPTIONS TO THIS RULE!

18. Contact lenses may be not be worn in the laboratory.

19. Dress properly during a laboratory activity. Long hair, dangling jewelry, and loose or baggy clothing are a hazard in the laboratory. Long hair must be tied back, and dangling jewelry and baggy clothing must be secured. Shoes must completely cover the foot. No sandals allowed on lab days.
20. A lab coat or smock should be worn during laboratory experiments.

21. Report any accident (spill, breakage, etc.) or injury (cut, burn, etc.) to the teacher immediately, no matter how trivial it seems. Do not panic.

22. If you or your lab partner is hurt, immediately (and loudly) yell out the teacher's name to get the teacher's attention. Do not panic.

23. If a chemical should splash in your eye(s) or on your skin, immediately flush with running water for at least 20 minutes. Immediately (and loudly) yell out the teacher's name to get the teacher's attention.

24. All chemicals in the laboratory are to be considered dangerous. Avoid handling chemicals with fingers. Always use a tweezer. When making an observation, keep at least 1 foot away from the specimen. Do not taste, or smell any chemicals.

25. Check the label on all chemical bottles twice before removing any of the contents. Take only as much chemical as you need.

26. Never return unused chemicals to their original container.

27. Never remove chemicals or other materials from the laboratory area.
READING QUESTIONS

1. Study the text Lab Safety Rules and underline the expressions you are not familiar with. Can you guess their meaning from the context?

2. Did any of the rules surprise you?

3. Work in pairs or small groups and decide which of the rules are of the most importance. Make a TOP TEN list. Explain why. Then report to the rest of the class.

LANGUAGE

Quantifiers

Quantifiers are words which show how many things or how much of something we are talking about. They are much, many, (a) little, (a) few, a lot (of), some, any, no, none, both, all, either, neither, each, every.

I. Basic uses of “some” and “any”

Some
1. Affirmatives: There are some people waiting outside.
2. Questions + "yes": Would you like some orange juice?
3. Requests: May I have some tea?
4. (=certain): Some people believe everything
5. Some=several: I haven’t phoned my uncle for some years.

Any
1. Negatives: I don’t want any sugar.
2. Uncertain questions: Do you have any money on you?
3. With “hardly”, etc.: There’s hardly any rain.
4. With “at all”: I haven’t any idea at all.
5. After “if”: Buy some apples if you see any.
6. Any=it doesn’t matter who or which: Any fool knows the right answer.

General statements
We always use zero in general statements: Beans are good for you.

Not...any, no, none
1. We can use “no” when we mean “not any”. We use an affirmative verb with no.
 There aren’t any buses after midnight. = There are no buses after midnight.
2. We can also use “no” in place of “not a/an”: I’m not an expert. = I’m no expert.
3. None stands on its own as a pronoun: We have no bananas. We have none.
 We do not use “no of”. Instead we use “none of” or “none” on its own: None of the films that are shown in town look very interesting.

II. Basic uses of “much” and “many”

We use “much” with singular uncountable nouns: much money.
We use “many” with plural countable nouns: many trees.
1. In negative statements: There isn’t much space in this flat.
 There aren’t many pandas in China.
2. In questions: Is there much demand for silk stocking?
Will there be many guests at the party?
3. In formal statements: Much money is spent for shopping.
 Many teachers retire early.
4. In time references: I’ve lived here for many years.
5. With “as…as” Take as much as you like.

Basic uses of “a lot of” (lots of)
We use a “lot of” with plural countable or singular uncountable nouns: a lot of books.
1. in the affirmative sentences: There were such a lot of people in the shops.
2. In negative statements for emphasis: I haven’t got a lot of time for people like him.
If we use a quantifier on its own (not in front of a noun or pronoun) we do not use of:
Did you buy any fruit? – Yes, I bought a lot/lots. (Not a lot of)

Basic uses of “little/a little” and “few/a few”
We use “few” and “a few” with plural countable nouns: a few friends, few friends.
We use “little” and “a little” with uncountable nouns: a little time, little time.
1. A little means “some but not much”, “a small quantity”: He knows a little French.
2. A few – “a small number” We are going away for a few days.

Compare: I’ve got a little money (=some, but not much) Vs. I’ve got little money (= nearly no)
I’ve got a few friends (=some, but not many) Vs. I’ve got few friends (=nearly no)
We sometimes use only with a few and a little: I’ve got only a little time.

III. Basic uses of “both” and “all”
1. We use “both” and “both the” in exactly the same way to refer to two particular people or things (plural countable nouns): Both children/both the children are in bed.
2. We use “all + noun” to refer to things in general (=the whole number or amount):
 All children like to play (plural countable).
 All advice is useless (uncountable nouns).
3. “All the” refers to particular people or things: All the children in our street like to play (=all the+ plural countable nouns)
 All the advice you gave me was useless (=all the+ uncountable noun)

Three basic positions of “both” and “all” in affirmative sentences
1. After be when it is the only verb in a sentence: The girls are both ready (=Both girls/Both the girls are ready)
 The girls are all ready (=All the girls are ready)
2. After auxiliaries or the first auxiliary when there is more than one:
 The boys can both speak French (=Both boys/Both the boys can speak French)
 The committee should all have resigned (=All the committee should have resigned)
3. Before the main verb when there is only one verb: The girls both left early (=Both girls/Both the girls left early)
 The girls all left early (=All the girls left early)

4. In negative sentences:
 Both → neither: Both the girls left early = Neither of the girls left early
 All → none: All the girls left early = None of the girls left early
All compared with everyone/everybody and everything
1. We rarely use “all” on its own to mean 'everyone/everybody': Everyone/Everybody wanted Marilyn's autograph. (Not *All wanted*).
2. All means 'everyone/everybody' when we use other words with it: All of us/We all agreed to sign the contract. All those who were present were in favor. (= Everyone/Everybody agreed to sign. Everyone/Everybody present was in favor.
3. We often use all and everything with other words to refer to things: All/Everything I have belongs to you. He taught me all/everything I know.
 But note: He gave me everything

IV. Basic uses of “each” and “every”
1. We often use “each” and “every” to refer to two people or things. When referring to more than to we can use both “each” and “every”, “Each” suggests ‘one by one’, ‘separately’. “Every” suggests ‘all together’.
 Each child at the party had a piece of cake (Every is possible)
 Every child in the world loves ice-cream
2. We must use “every” after nearly and after nor: Nearly every shop is shut today.
3. We cannot use “of” after “every” and we cannot use “every” at the end of a sentence: Each of the child received a present. They received a present each.

Activities

Circle the right variant.
1. Give me ___ milk, please.
 1 any 2 some 3 no 4 –
2. We have ___ rivers but have ___ lakes.
 1 some 2 any 3 no 4 –
3. There is ___ taxi when you need ___
 1 any 2 one 3 no 4 –
4. You can find ___ time between six and nine.
 1 any 2 – 3 one 4 no
5. When I needed help, he didn’t ask ___ questions.
 1 no 2 some 3 - 4 any
6. You may have ___ tea without milk because there isn’t ___ at home.
 1 any 2 no 3 one 4 some
7. Ann is much younger than ___ other girls in her class.
 1 any 2 3 no 4 –
8. Shall I help you to ___ fruit?
 1 any 2 – 3 some 4 no

In the following sentences, fill in the gaps with one of the following quantifiers:
MUCH, MANY, A LOT OF, SOME, A LITTLE, LITTLE, A FEW, FEW

1. It seems to me that we haven't had ________ assignments in English this term.
2. How ________ material can we be expected to read in one week?
3. I've unfortunately had ________ headaches already because of stress.
4. Our yard looks awful this summer. There are too ________ weeds.
5. I didn't use ________ fertilizer last spring, and that has made a difference.
6. Also, I've paid very ________ attention to how ________ rain we've had.
7. I'm afraid it's rained ________ times this summer, and that is why the grass is turning brown and dying. Farmers are very upset.
8. How ________ good would it do if we watered the plants ourselves?
9. ________ of the advice I have ever received from so-called "experts" has been useless.
10. They said that just ________ help could make a big difference.
11. ________ people know as much about computers as Tomas does.
Choose between every, both, all and each.
1. _______ day he comes here, and _______ time he asks me the same question.
2. There was a huge building on _______ side of the square, _______ having a massive arched gate.
3. _______ windows in the house are open.
4. He shook hands and had a few minutes’ talk with _______ of us.
5. I see him _______ day.
6. _______ his legs were broken in the accident.
7. You’ve been given _______ opportunity to do well in this company.
8. I’ve phoned him twice, but he’s been out on _______ occasion.
9. _______ people are mortal.
10. By that time _______ his sisters had got married.
11. She had brown shining hair which hung down on _______ sides of her face.

WRITING

Writing a formal letter
Match the greetings and the endings. Which are formal? Which are informal?

1. Dear Helen	a. Yours Bob
2. Dear sir or Madam	b. Yours faithfully Robert J Fleming
3. Darling Rosie	c. Love Bob
4. Dear Ms Mc Donald	d. Lots of love Bobby xxx
5. Dear Philip	e. Yours sincerely Robert Fleming

Look at this outline of a formal letter
Rua Luis de Deus 18, 3000 Coimbra, Portugal. 29th March 2013. The Principal, the Oxford English College, 234 Hilton RD, Westbourne BN43UA. Dear Sir or Madam, I saw your advertisement for English classes in this month’s English Today magazine and I am interested in coming to your school this summer. I have studied English for three years but I have never been to England and I feel that this is now necessary, especially to improve your pronunciation. Please could you send me more information about your courses, and an application form? I would also like some information about accommodation. I look forward to hearing from you as soon as possible. Yours faithfully, Ana Maria Fernandez.
Chemistry is the science that studies the **substances** that make up the universe. Chemists investigate properties of substances to find out what they are made of and how they change under different conditions. Chemists heat and freeze different objects. They also add other substances to the items to see how they react. The basis of chemistry lies in the basic elements that make up everything that exists in the world. All of those elements can be viewed on the periodic table of **elements**, which you will most likely become very familiar with throughout your academic career.

Chemical changes aren’t just happening in chemists’ labs. They happen all the time in nature. Think about the process of breathing. You inhale oxygen and exhale carbon dioxide. That is chemistry. When you light a fire, wood turns to ashes. A chemical change takes place. These are examples of chemistry on a very basic level. Chemists have been studying chemical changes for a very long time. Chemistry crosses over into many different fields. It’s important in medicine, engineering, energy, and **industry**.

Chemistry takes a substance and looks at the molecules that make up that substance. The molecules are then broken down to atoms. Atoms are so tiny that they cannot be seen with the naked eye. You actually need to use a very powerful **microscope** to see an atom. Chemists can bond atoms to each other to see what happens. When an atom is sliced in half, a nuclear reaction occurs. Chemists who discovered how to split an atom in a controlled environment created the atomic bombs that were dropped on Hiroshima and Nagasaki in Japan during World War II. Chemists have also discovered how to create life-saving drugs. Chemistry is a pretty powerful thing.

READING COMPREHENSION:

Tick (✔) the right answer

1. *Chemistry is the study of*
 a. The process of breathing air in and out.
 b. The substances that make up the universe.
 c. How to create medicines and drugs.
 d. How different sciences relate to each other.

2. *Why does the author describe the process of breathing and lighting a fire?*
 a. To provide common examples of chemical changes
 b. To show how many things do not require chemistry
 c. To contrast the sciences of chemistry and physics
 d. To explain how complicated the world of chemistry is

1. **substances** – something that has weight and takes up space
2. **elements** – one of the substances that each has its own kind of atom
3. **industry** – making or producing goods on a large scale by businesses and factories
4. **microscope** – an instrument with a special lens for making a smaller object appear larger
3. Which of the following professionals would most likely NOT use chemistry?
 a. A lawyer
 b. A doctor
 c. A science teacher
 d. An engineer

4. Read the following sentence: “Chemists investigate properties of substances to find out what they’re made of and how they change under different conditions.” The word properties means
 a. Theories or guesses
 b. Models or fake versions
 c. The best of something
 d. Characteristics or features

5. This passage is mainly about
 a. How chemists split an atom.
 b. How chemical reactions are always taking place.
 c. An introduction to the science of chemistry.
 d. Why people should become chemists.

6. What is one example from the passage of chemical changes in nature?

7. Explain why the author says that chemistry is “a pretty powerful thing.”

Chapter 2: CHEMISTRY BASICS

Text 1: Why Does Matter Matter? by Kelly Hashway

What do trees, air, and water have in common? They all have matter. That means they take up space. You might be wondering why these things look so different if they all have matter. Everything found on Earth can be grouped into one of three states of matter: solid, liquid, or gas. In order to figure out which state of matter an object fits in, we have to examine its properties. The properties we look at are shape, mass, and volume. Mass is the amount of matter an object has, and volume is the amount of space the matter takes up.

Solids are easy to recognize. They have definite shape, mass, and volume. Trees are solids. They are made up of tiny particles called atoms. These atoms are packed closely together, and they hold the solid in a definite shape that does not change. If you look around your house, you will see lots of solids. Televisions, beds, tables, chairs, and even the food you eat.

Liquids do not have definite shape, but they do have definite mass and volume. Liquids are similar to solids because their atoms are close together, but what makes a liquid different is that those atoms can move around. Liquids can change shape by flowing. If you’ve ever spilled a glass of milk, then you know it spreads out across the floor. It does this because the milk is taking the shape of the floor. Since liquids do not have a definite shape of their own, they will take the shape of their containers. This is why the same amount of milk can look different in a tall glass, a wide mug, or spread out on your kitchen floor.

Gases do not have definite shape or volume. Like liquids, gasses will take the shape of their containers. If a gas is not in a container, it will spread out indefinitely. This is because the atoms in a gas are spaced farther apart than in a solid or a liquid. And being spread out like this allows them to move around freely. Think about the air you breathe every day. That air is spread across the empty space around the earth. You’ve probably also noticed that you usually cannot see the air. This is another property of gases. Even though we cannot see them, you come in contact with them every day. There’s air in the tires of your family car and your bicycle. The sun is made up of gases, and the clouds in the sky are mostly made from water vapor.

When trying to remember the three states of matter, think about water. If it freezes into a solid, it becomes ice. Its atoms are packed together keeping its shape. Of course, we know water can also be a liquid. It flows in rivers or it can be poured from a glass. When water evaporates it becomes water vapor, a type of gas in the air. Try a little experiment of your own by placing an ice cube in a covered glass. You will be able to observe the ice first in its solid form and then watch as it melts into a liquid to become water. Eventually the water will turn to water vapor and your glass or container will be filled with this gas.

You can see three different states of matter in this picture. The pot is made of solid matter. The water inside the pot is liquid. When the liquid is heated it becomes water vapor, which is a gas. Matter is everywhere! Can you find a solid, a liquid, and a gas around you right now?
READING COMPREHENSION:

Choose a word from the box to complete each sentence.

<table>
<thead>
<tr>
<th>solids</th>
<th>gases</th>
<th>liquids</th>
<th>volume</th>
<th>mass</th>
<th>shape</th>
<th>container</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>chair</td>
<td>milk</td>
<td>ice</td>
<td>air</td>
<td>clouds</td>
<td>juice</td>
<td>melting</td>
<td>atoms</td>
</tr>
</tbody>
</table>

1. The three basic properties of matter are ______________________________, and ______________________________, and ______________________________.

2. All matter is made up of tiny particles called ____________________________.

3. Volume is the amount of ___________________________ that matter takes up.

4. Mass is the amount of ___________________________ an object has.

5. Liquids take the shape of their ____________________________.

6. ___________________________ do not have a definite shape or volume.

7. ___________________________ do not have a definite shape, but they do have a definite volume.

8. ___________________________ have a definite shape and volume.

9. A ___________________________ and ___________________________ are examples of solids.

10. ___________________________ and ___________________________ are examples of liquids.

11. ___________________________ and ___________________________ are examples of gas.

12. Solid ice is ___________________________ when it is changing into a liquid.

Fill in the blanks with the appropriate words

<table>
<thead>
<tr>
<th>Verb</th>
<th>Adjective</th>
<th>Noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>.........</td>
<td>............</td>
<td>Solid</td>
</tr>
<tr>
<td>.........</td>
<td>............</td>
<td>Liquid</td>
</tr>
<tr>
<td>.........</td>
<td>............</td>
<td>Gas</td>
</tr>
<tr>
<td>Examine</td>
<td>............</td>
<td>............</td>
</tr>
<tr>
<td>Freeze</td>
<td>............</td>
<td>............</td>
</tr>
<tr>
<td>Evaporate</td>
<td>............</td>
<td>............</td>
</tr>
</tbody>
</table>

Tick the right option

Properties of Matter

- a. Three states of matter are
 - b. density, weight, and gas
 - c. gas, liquid, and mixture
 - d. solid, liquid, and gas
 - e. buoyancy, mass, shape

The temperature at which a substance changes from a solid to a liquid.

- a. boiling point
 - b. melting point
 - c. pure substance

The particles of matter making up a(n) _______________ are packed together tightly.

- a. helium
 - b. liquid
 - c. gas
 - d. solid

Which would cause liquid water to change to a solid?

- a. warming
 - b. heating
 - c. freezing
 - d. dripping
How can a liquid become a solid?

a. By something removing heat from it and slowing down the particles.
b. By something removing heat from it and speeding up the particles.
c. By something adding heat to it and slowing down the particles.
d. By something adding heat to it and speeding up the particles.

A SOLID is all matter that has a shape of its own.

a. True
b. False

Which state of matter is easily compressed and easily changes shape to fill its container?

a. solid
b. liquid
c. gas
d. plasma

An example of a gas is

a. chocolate syrup
b. a rock
c. pencils
d. helium

What type of substance can be poured and takes the shape of its container?

a. Liquid
b. Gas
c. Solid
d. Plasma

Sand is a liquid because it takes the shape of its container.

a. True
b. False

Sublimation is when a_____ changes directly to a_____.

a. Solid, liquid
b. Gas, liquid
c. Plasma, gas
d. Solid, gas

LANGUAGE

Gerund # Infinitive

<table>
<thead>
<tr>
<th>Gerund</th>
<th>Infinitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using a gerund suggests that you are referring to real activities or experiences.</td>
<td></td>
</tr>
<tr>
<td>Using an infinitive suggests that you are talking about potential or possible activities or experiences.</td>
<td></td>
</tr>
<tr>
<td>✶ A gerund is a noun made from a verb by adding "-ing." You can use a gerund as the subject, the complement, or the object of a sentence. Examples: Reading helps you learn English. Her favorite hobby is reading. I enjoy reading.</td>
<td>✶ Infinitives are the "to" form of the verb. You can also use an infinitive as the subject, the complement, or the object of a sentence. Examples: To learn is important. The most important thing is to learn. He wants to learn.</td>
</tr>
<tr>
<td>✶ Gerunds can be made negative by adding "not." Examples: He enjoys not working.</td>
<td>✶ Infinitives can be made negative by adding "not." Examples: I decided not to go.</td>
</tr>
</tbody>
</table>
| ✶ Some verbs (go enjoy quit discuss mind can't stand suggest...) are followed by gerunds as objects. | ✶ Some verbs (promise plan refuse want...)}
Activities

Examples: *She suggested going to a movie.*

- When you use a verb after a preposition in a sentence, use a gerund.
 Examples: "He ended his speech by thanking everyone.*

need decide hope...) are followed by infinitives. Examples: *She wants to go to a movie.*

- Use an infinitive verb (*without to*) with modal verbs
 Examples: "We could go shopping tomorrow.*

- We use to + infinitive after an adjective / adverb + enough.
 Examples: "Simon isn’t old enough to drive.*

We use the Gerund or the Infinitive after the following verbs with no difference in the meaning: *start, can’t bear, can’t stand, cease, continue, intend, love, hate, prefer, neglect, and propose.*

Examples: *He began talking.*

He began to talk.

Some verbs have different meaning when used with Gerund or Infinitive: *forget, go on, remember, regret, stop, and try.*

<table>
<thead>
<tr>
<th>Word</th>
<th>Infinitive meaning</th>
<th>Gerund meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>forget / remember</td>
<td>with regard to the future Remember to switch off the lights.</td>
<td>with regard to the past Do you remember switching off the lights?</td>
</tr>
<tr>
<td>go on</td>
<td>start something new Go on to read.</td>
<td>continue with the same action Go on reading.</td>
</tr>
<tr>
<td>regret</td>
<td>with regard to the future I regret to say that.</td>
<td>with regard to the past I regret saying that.</td>
</tr>
<tr>
<td>stop</td>
<td>interrupt another action I stopped to smoke.</td>
<td>terminate I stopped smoking.</td>
</tr>
<tr>
<td>try</td>
<td>do something complicated Try to solve this riddle.</td>
<td>do it and see what happens Try talking to him.</td>
</tr>
</tbody>
</table>

Decide whether to use Infinitive (*with/without to*) or Gerund.

1) What can we do __________________ (live) a healthy life?
2) In our society, people spend more and more time__________________ (work).
3) So we often don’t bother __________________ (prepare) healthy meals.

 In order to save time, we tend ________________ (buy) fast food.
4) At fast food restaurants, we can ________________ (eat) quite a lot without ________________ (have) ________________ (pay) a fortune.
5) And children enjoy ________________ (eat) chips and burgers and ________________ (drink) lemonade and cola.
6) That’s a problem because ________________ (eat) habits are hard______________ (shake)
7) The high amount of carbohydrates in fast food and sugary drinks is blamed for ________________ (destabilize) the body's regulation of appetite.
8) So we keep on ________________ (want) ________________ (eat) more.
9) Bad __________________ (eat) habits result in people __________________ (become) obese.
10) Obese people risk __________________ (suffer) from heart diseases.
11) We can avoid __________________ (risk) such diseases by __________________ (choose) __________________ (eat) healthy food.
12) Be careful though. Some people are convinced __________________ (do) something for their health by __________________ (live) on energy bars or cornflakes.
13) And this is what the advertising for these products wants __________________ (make) us think.
14) In reality, however, these foods are often heavily sugared __________________ (give) them flavor.
15) But sugar is not mentioned as clearly as the low fat - that's why experts warn against __________________ (rely) on the ads.
16) __________________ (live) a healthy life, we ought__________________ (choose) our food wisely.
17) We should __________________ (eat) regular meals and try __________________ (find) ways of __________________ (exercise) more.

Complete the sentences with the correct form (infinitive or gerund) of the verb.

Early automobiles
Many inventors were trying __________________ (build) gas-powered, self-propelled vehicles in the late 1800's. A French inventor succeeded in__________________ (create) a steam-powered tricycle in 1769. A German engineer, Nicklaus August Otto, is known for __________________ (invent) the four-stroke gas-powered engine in 1876. Both Gottlieb Daimler and Carl Benz managed __________________ (build) and __________________ (sell) autos in Germany in the 1880s.
By 1898 there were 50 companies responsible for __________________ (market) cars in the United States alone. That number happened __________________ (expand) to 241 by 1908. It was in 1908 when Henry Ford started __________________ (make) automotive history. It was in that year that he managed __________________ (put) together the first assembly line and __________________ (lower) the price of automobiles so that everyone could buy one. He began __________________ (arrange) workers so that they could each do a small part of the job in sequence. This prevented __________________ (repeat) a log of unnecessary steps in the assembly process. By 1913 he managed __________________ (produce) 250,000 cars a year. His first mass-produced car, the Model T, guaranteed __________________ (give) modest-income Americans decent transportation for a reasonable ($500 USD!) price.
Henry Ford went on __________________ (lead) the U.S. automobile industry for many years. Though he tried, he failed __________________ (get) elected to the U.S. Senate in 1918. His company was started with just $28,000 and, by 1913, managed __________________ (pay) dividends of $11 million.
While Ford declined __________________ (give) away more than a modest amount during his lifetime, the Ford Foundation arranges __________________ (donate)millions of dollars each year to deserving causes.
Translate the following passage into French

When trying to remember the three states of matter, think about water. If it freezes into a solid, it becomes ice. Its atoms are packed together keeping its shape. Of course, we know water can also be a liquid. It flows in rivers or it can be poured from a glass. When water evaporates it becomes water vapor, a type of gas in the air. Try a little experiment of your own by placing an ice cube in a covered glass or container. You will be able to observe the ice first in its solid form and then watch as it melts into a liquid to become water. Eventually the water will turn to water vapor and your glass or container will be filled with this gas.
Basic mathematical symbols

Study the mathematical expressions and chemical formulas.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Explanation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>equality</td>
<td>x = y means x and y represent the same thing or value.</td>
<td>1 + 1 = 2</td>
</tr>
<tr>
<td></td>
<td>is equal to; equals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>everywhere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≠</td>
<td>inequation</td>
<td>x ≠ y means that x and y do not represent the same thing or value.</td>
<td>1 ≠ 2</td>
</tr>
<tr>
<td></td>
<td>is not equal to; does not equal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>everywhere</td>
<td></td>
<td></td>
</tr>
<tr>
<td><</td>
<td>strict inequality</td>
<td>x < y means x is less than y.</td>
<td>3 < 4</td>
</tr>
<tr>
<td></td>
<td>is less than, is greater than</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>order theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>></td>
<td>is greater than, is much greater than</td>
<td></td>
<td>5 > 4</td>
</tr>
<tr>
<td></td>
<td>4 + 6 means the sum of 4 and 6.</td>
<td></td>
<td>2 + 7 = 9</td>
</tr>
<tr>
<td>+</td>
<td>addition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>arithmetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>−</td>
<td>sub(s)traction</td>
<td>9 − 4 means the sub(s)traction of 4 from 9.</td>
<td>8 − 3 = 5</td>
</tr>
<tr>
<td></td>
<td>minus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiplication</td>
<td>3 · 4 means the multiplication of 3 by 4.</td>
<td>7 · 8 = 56</td>
</tr>
<tr>
<td>.</td>
<td>(x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>times, multiplied by</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>arithmetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>÷</td>
<td>division</td>
<td>6 ÷ 3 or 6 / 3 means the division of 6 by 3.</td>
<td>2 ÷ 4 = .5</td>
</tr>
<tr>
<td>:</td>
<td>divided by</td>
<td></td>
<td>12 / 4 = 3</td>
</tr>
<tr>
<td></td>
<td>arithmetic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
resulting in

\[\text{Na}^+ \text{Cl}^- \]

give(s), leads to, yields

chemical equations

\[\text{H}_2 + \text{Cl}_2 \rightarrow 2\text{HCl} \]

Na\text{+Cl} \rightarrow \text{means Na and Cl give.....}
3) CaCl₂ sodium chloride c) it is used for relief of heartburn and sore stomach; to improve symptoms of indigestion

4) CO₂ sodium sulphate d) it is a colourless gas which forms white fumes; skin contact can cause redness, pain, severe skin burns

5) C₂H₂ trioxygen e) it is a weak organic acid and a natural preservative; it is also used to add an acidic, or sour taste to food and soft drinks; it exists in a variety of fruits

6) NaCl magnesium oxide f) it is a colourless gas widely used as a fuel; it is mainly manufactured by the partial combustion of methane; it has explosive character and ability to poison

7) Na₂SO₄ ethanol g) it is solid at room temperature; it can be produced directly from limestone; as an ingredient it is listed as a permitted food additive in EU as E509

8) O₃ hydrogen chloride h) it is a gas at standard temperature and pressure; it exists in Earth's atmosphere in this state; it is known as a part of photosynthesis

9) C₂H₅OH calcium chloride i) it is essential for animal life in small quantities; it can be harmful to animals and plants in excess; it is used for food preservation

10) C₆H₈O₇ carbon dioxide j) it is also called pure alcohol; it is a flammable, colourless liquid, known as an essential solvent; it is used in medicines, food industry, etc.

<table>
<thead>
<tr>
<th>1. +...</th>
<th>2. +...</th>
<th>3. +...</th>
<th>4. +...</th>
<th>5. +...</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. +...</td>
<td>7. +...</td>
<td>8. +...</td>
<td>9. +...</td>
<td>10. +...</td>
</tr>
</tbody>
</table>
ATOMS AND MOLECULES

What is the difference between atoms and molecules? It is actually pretty simple. Molecules are made up of atoms. Each element on the periodic table of elements is made up of one single type of atom. Molecules are formed when atoms bond. Different types of atoms can form together to make a molecule. Two or more of the same type of atom can also be bonded to make a molecule.

For example, H is the symbol for hydrogen and O is the symbol for oxygen. Water is made up of both hydrogen and oxygen. H₂O is the symbol for water. Two hydrogen atoms and one oxygen atom are bonded together to create a water molecule. Oxygen gas is made up of two oxygen atoms bonded together. O₂ is the symbol for an oxygen molecule.

With so many elements, imagine all the combinations of atoms that have been researched and have yet to be researched. Chemistry is very complicated because there are so many different combinations.

READING COMPREHENSION:

Tick (✔) the right answer

1. Water molecules are made up of
 a. any two atoms bonded together.
 b. two hydrogen atoms and one oxygen atom.
 c. atoms of only one type of element bonded together.
 d. two oxygen atoms.

2. Why does the author describe the atoms that make up water?
 a. to give an example of a specific molecule
 b. to show how liquids are different from solids
 c. to explain why water is so abundant
 d. to illustrate how simple chemistry is

3. Can a single atom be considered a molecule?
 a. only if the atom is found in water
 b. no, it takes two or more atoms bonded to create a molecule
 c. only if it is an oxygen atom floating in the air
 d. yes, all atoms are made up of many different molecules

4. Read the following sentence: “Chemistry is very complicated because there are so many different combinations.”
The word complicated means
 a. simple and basic
 b. difficult to understand
 c. fun and exciting
 d. able to be learned easily

1. **molecules** – the smallest units of a substance that can exist by themselves; are made of one or more atoms
2. **bond** – to fasten together
3. **symbol** – a written sign used instead of a word to represent something
4. **combinations** – something that results when two or more substances are brought together
5. What is the main idea of this passage?
 a. Bonded atoms make up molecules.
 b. Atoms and molecules are unrelated to each other.
 c. Water is the most common type of molecule.
 d. Oxygen and hydrogen are necessary for molecules.

6. What makes up a molecule of oxygen gas?

7. Explain why understanding bonding is important for understanding molecules.

8. The question below is an incomplete sentence. Choose the answer that best completes the sentence.
 Molecules can be made up of two atoms of the same element; ____________, oxygen gas is made up only of oxygen atoms.
 a. for example
 b. most importantly
 c. on the other hand
 d. therefore

WRITING

There are three types of CVs:

CHRONOLOGICAL CV
A chronological CV focusses on presenting the candidate's experience on an employer by employer basis, with the posts being listed in reverse chronological order. It also contains detail of education and qualifications, together with hobbies. Some chronological CVs also contain a brief personal statement at the front which sets out the key skills and strengths of the candidate. This is the most common type of CV.

How to structure a chronological CV
- A chronological CV typically uses the following structure:
- Personal details (i.e. name and contact details)
- Personal profile or career objectives. This should not exceed 5 lines.
- Employment in reverse chronological order. Under each employer, you should set out a number of bullet points which describe your key achievements. In order to be fully effective, you should ensure that you use power words.
 - Key qualifications
 - Professional memberships
 - Hobbies and personal interests

FUNCTIONAL CV
A functional CV typically starts with a personal profile which highlights the achievements, skills and personal qualities that you possess. This is then followed by a succession of sections, each relating to a different skill or ability. These should be ordered in decreasing order of importance. Instead of focussing on any particular job, you should describe your experience in its glabality. Since you are not focussing on any particular past employment, this means
you can include any skills or experience gained in voluntary or unpaid work.

COMBINED CV

<table>
<thead>
<tr>
<th>Français</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapitres d’un CV</td>
<td>CV chapters</td>
</tr>
<tr>
<td>État civil</td>
<td>Civil status</td>
</tr>
<tr>
<td>Nom + prénom</td>
<td>Name + first name</td>
</tr>
<tr>
<td>Sexe (féminin – masculin)</td>
<td>Sex (female – male)</td>
</tr>
<tr>
<td>Date de naissance</td>
<td>Date of birth</td>
</tr>
<tr>
<td>Adresse</td>
<td>Address</td>
</tr>
<tr>
<td>Téléphone</td>
<td>Telephone</td>
</tr>
<tr>
<td>Études et formations</td>
<td>Education and training</td>
</tr>
<tr>
<td>Expérience professionnelle</td>
<td>Professional experience</td>
</tr>
<tr>
<td>Centres d’intérêt</td>
<td>Interests</td>
</tr>
<tr>
<td>Activités</td>
<td>Activities</td>
</tr>
<tr>
<td>Activités annexes</td>
<td>Extracurricular activities</td>
</tr>
<tr>
<td>Divers</td>
<td>Additional information</td>
</tr>
<tr>
<td>Divers</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Références</td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A propos du travail</th>
<th>About the job</th>
</tr>
</thead>
<tbody>
<tr>
<td>Une carrière</td>
<td>A career / A line of work</td>
</tr>
<tr>
<td>Un métier</td>
<td>A trade / job</td>
</tr>
<tr>
<td>Expérience professionnelle</td>
<td>Work experience</td>
</tr>
<tr>
<td>Être responsable de…</td>
<td>To be responsible for… in charge of…</td>
</tr>
<tr>
<td>Accéder au poste de …</td>
<td>To reach the position of …</td>
</tr>
<tr>
<td>Travail temporaire</td>
<td>Temporary work</td>
</tr>
<tr>
<td>Travailler à temps partiel</td>
<td>To work part-time</td>
</tr>
<tr>
<td>Travailler à mi-temps</td>
<td>To work half-time</td>
</tr>
<tr>
<td>Travail à plein temps</td>
<td>Full time work</td>
</tr>
<tr>
<td>Job d’été</td>
<td>Summer job</td>
</tr>
<tr>
<td>Petits boulots</td>
<td>Odd jobs</td>
</tr>
<tr>
<td>Stage de formation</td>
<td>Training session</td>
</tr>
<tr>
<td>Stage (dans une entreprise)</td>
<td>Internship</td>
</tr>
<tr>
<td>Formation continue</td>
<td>Personal training</td>
</tr>
<tr>
<td>Licenciement économique</td>
<td>Economic lay off</td>
</tr>
<tr>
<td>Chômage</td>
<td>Unemployment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postuler</th>
<th>To apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postuler / poser sa candidature</td>
<td>To apply for a job</td>
</tr>
<tr>
<td>Entretien de recrutement</td>
<td>Recrutement interview</td>
</tr>
<tr>
<td>Correspondre au profil demandé</td>
<td>To fit the job</td>
</tr>
<tr>
<td>Un candidat</td>
<td>An applicant</td>
</tr>
<tr>
<td>Une candidature</td>
<td>An application</td>
</tr>
</tbody>
</table>
Être expérimenté | To be experienced
Compétences (niveau de…) | Skills (level of proficiency)
Mes attentes | My expectations
Capacités | Abilities
Expérience (solide … en) | Experience (strong … in)
Maîtriser (quelque chose) | Be familiar with
Être capable de … | To show ability / to be able to
Prendre des décisions | Make decisions
Être digne de confiance | To be reliable
Motivé (très…) | Motivated (strongly …)
Faire preuve d’initiative | To show initiative
Se consacrer à… | To commit oneself to…
Un vif intérêt pour….. | A keen interest in
Être mobile (accepter les déplacements) | To be willing to travel
Avoir le sens du contact | To be able to relate well with people
Bonne maîtrise de l’anglais oral et écrit | Good skills at English both written and oral
Bonne connaissance de l’anglais | Good knowledge of English

Parlons d’argent | Salary
Salaire | Salary / wages
Rémunération actuelle (per annum = p.a) : | Present salary (par an)
Bien payé | Well-paid
Mal payé | Badly-paid
Sous-payé | Underpaid

Personnes | Persons
Un patron | A manager
Un employeur | An employer
Un cadre | An executive
Un responsable de projet | A supervisor
Un employé | An employee
Un intérimaire | A temporary worker/employee
Un ouvrier | A worker / a blue-collar
Un stagiaire | A trainee

Useful expressions

Dear Sir or Madam
(Madame, Monsieur - quand on ne sait pas qui va la recevoir)

To Whom It May Concern …
(très impersonnel - A qui de droit)

I am writing to you about your advertisement.
je vous écris à propos de votre annonce...

I am writing to you to apply for the position of....
je vous écris pour postuler au poste de...
I am writing to you in reference to your advertisement.
Je vous écris concernant votre annonce...

As indicated in your advertisement...
Comme indiqué dans votre annonce...

Your advertisement in (source) for the position of (job) sparked my interest.
Votre annonce dans (source) pour le poste de (emploi) a attiré mon attention.

I have worked as a ... (/in)
Je travaille comme...

In my current position I have worked ... developed... created ...
Dans mon poste actuel, je travaille... je développe... je crée

I would define myself as a
Je me définirais comme...

I believe it is time for me to move to another company / department ... like yours
Je pense qu’il est temps pour moi d’aller dans une autre entreprise... telle que la vôtre

I believe my qualifications would match your requirements.
Je pense que mes compétences seraient en adéquation avec vos besoins

I am available for an interview.
Je suis disponible pour un entretien.

Please find my résumé enclosed.
Veuillez trouver ci-joint mon CV.

I am sending my résumé as an attachment.
Je vous envoie mon CV en pièce jointe.

I look forward to hearing from you soon. / sincerely yours; yours faithfully. / …
En attente de vos nouvelles (formules de politesse de fin de lettre: cordialement - respectueusement etc.)

More tips
- Ideally your CV in English should not be longer than one page. Two pages are only acceptable if you have had many different jobs and a variety of experience.
- Spacing, aligning and layout are very important when you write your CV, in order to create a positive and professional impression.
- Use ‘dynamic’ and ‘action’ verbs such as attained, accomplished, conducted, established, facilitated, founded, managed, etc.
- Do not use the personal pronoun ‘I’ in your CV; use sentences without a personal pronoun: Established and managed a new sales force, not I established and managed a new sales force.
My name’s Dominique Dupont. I live in Cannes at 226 Avenue de la Mer. I’m 20 years old. I was born on 22 March 1990. You can send me an email via ddupont@orange.fr and my mobile phone number is 33 7456322114. I attended high school in Cannes until I passed my baccalaureate in 2008. I’ve just finished a two-year training course in business management and now I have a diploma in management. My IT skills are excellent and I speak and write English well. I did a summer job at Techno Diagnostics in Cannes working with the Sales Manager, Mr. Daniel Blanc. I’m hard-working and get on easily with people. I’m not afraid of responsibility or challenges.
The world contains millions of different chemical substances, which are made of just over 100 different elements. You can find their names in the periodic table. You will probably recognise many of the names in the table: e.g. oxygen, nitrogen, chlorine, fluorine, iodine, iron, copper, silver, gold, platinum, uranium. Some of their names are quite pretty: e.g. beryllium and zirconium. Others are quite unpronounceable: e.g. ytterbium and seaborgium. Elements have been named after people, e.g. curium and einsteinium, after places, e.g. europium and californium, after planets e.g. neptunium and plutonium, or after their properties e.g. radium.

Pure elements are made of very tiny particles called atoms. Each element has a unique kind of atom: it is the number of protons in the nucleus of an atom that determines what element it is. Atoms can be combined together to make molecules. Molecular elements contain only one kind of atom e.g. oxygen, nitrogen and hydrogen. Molecular compounds contain two or more different kinds of atoms bonded together e.g. carbon dioxide, sucrose and proteins. The chemicals in our bodies are largely composed of the elements carbon, hydrogen, oxygen, nitrogen and phosphorus. Other elements are present in our bodies in much smaller amounts. Iron is an important part of the haemoglobin molecule in our blood. Without iron, our blood would not be able to carry oxygen from the lungs to our tissues for respiration.

At first it will seem an awful lot to learn, but there are rules which will make it much easier to remember the names of chemicals and how they are formed. Burning a pure element in oxygen will produce an oxide. There are no prizes for guessing which elements have been burnt to produce copper oxide, iron oxide, calcium oxide, though a few are more difficult. We do not usually call water by its chemical name, which is hydrogen oxide. In some cases there are two or more different oxides that can be produced when an element burns. Carbon monoxide and carbon dioxide are both produced when carbon containing substances are burnt. These two gases both contain the elements carbon and oxygen, but one contains twice as much oxygen as the other. Burning sulphur can produce either sulphur dioxide or sulphur trioxide.

You will have seen on the periodic table that every element has been given its own unique symbol. These are either a single uppercase letter, e.g. C H I C or an uppercase letter followed by a lowercase letter e.g. Cu Ra Te. Chemists can write the names of chemical substances using these symbols as a form of shorthand. Once you are familiar with the rules you will find it quite easy to use this shorthand form. Here are some easy ones: CO, CO2, CuO, H2O, Na2O, CaO, MgO, Fe2O3, S2O, SO3. The subscripted numbers tell you how many atoms of the element to its left are present in a molecule. Where there is no number you assume that it is one atom.
READING COMPREHENSION:

Read the paragraphs above and answer the following questions.

1. What are the tiny particles of which elements are made called?

2. What is the difference between the molecules of oxygen and those of carbon dioxide?

3. Name the five most important elements in our bodies.

4. What is the difference between Co and CO?

LANGUAGE AFFIXES

Prefixes

Prefixes are small parts of words that are added to a word to change the meaning. Prefixes are added to the beginning of a word.

Example Prefix
"happy" becomes "unhappy" when you add the prefix "un" ("un-" means "not," so "unhappy" means "not happy")

Explanation
Prefixes:
 ➢ are added to the beginning of words.
 ➢ can be added to nouns, verbs, adjectives, and adverbs

Chart of common negative and positive prefixes

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-</td>
<td>against</td>
<td>antiglare, antistatic</td>
</tr>
<tr>
<td>de-</td>
<td>reduce, reverse</td>
<td>demagnetize, decode</td>
</tr>
<tr>
<td>dis-</td>
<td>opposite feeling</td>
<td>disagree</td>
</tr>
<tr>
<td>dis-</td>
<td>opposite action</td>
<td>disconnect</td>
</tr>
<tr>
<td>il-</td>
<td>not</td>
<td>illegal</td>
</tr>
<tr>
<td>im-</td>
<td>not</td>
<td>impossible</td>
</tr>
<tr>
<td>in-</td>
<td>not</td>
<td>incomplete</td>
</tr>
<tr>
<td>ir-</td>
<td>not</td>
<td>irregular, irrelevant</td>
</tr>
<tr>
<td>mal-</td>
<td>bad, wrong</td>
<td>malfunction</td>
</tr>
<tr>
<td>mis-</td>
<td>bad, wrong</td>
<td>misdirect</td>
</tr>
<tr>
<td>non-</td>
<td>not connected with</td>
<td>non-programmable</td>
</tr>
<tr>
<td>un-</td>
<td>not</td>
<td>unmagnetized</td>
</tr>
<tr>
<td>under-</td>
<td>too little</td>
<td>underestimate</td>
</tr>
<tr>
<td>over-</td>
<td>too much</td>
<td>overload</td>
</tr>
<tr>
<td>re-</td>
<td>do again</td>
<td>reorganize</td>
</tr>
</tbody>
</table>

Negative:

Positive:
<table>
<thead>
<tr>
<th>Chart of common prefixes of size</th>
<th>Prefix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>equi-</td>
<td>equal</td>
<td>equidistant</td>
</tr>
<tr>
<td></td>
<td>macro-</td>
<td>large, great</td>
<td>macroeconomics</td>
</tr>
<tr>
<td></td>
<td>mega-</td>
<td>large, great</td>
<td>megabyte</td>
</tr>
<tr>
<td></td>
<td>micro-</td>
<td>very small</td>
<td>microcomputer, microscopic</td>
</tr>
<tr>
<td></td>
<td>mini-</td>
<td>small</td>
<td>minicomputer</td>
</tr>
<tr>
<td></td>
<td>semi-</td>
<td>half, partly</td>
<td>semiconductor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chart of common prefixes of location</th>
<th>Prefix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ex-</td>
<td>out</td>
<td>exclude, extrinsic</td>
</tr>
<tr>
<td></td>
<td>extra-</td>
<td>beyond</td>
<td>extraordinary</td>
</tr>
<tr>
<td></td>
<td>infra-</td>
<td>below</td>
<td>infra-red</td>
</tr>
<tr>
<td></td>
<td>inter-</td>
<td>between, among</td>
<td>interface, interactive</td>
</tr>
<tr>
<td></td>
<td>mid-</td>
<td>middle</td>
<td>midbrain</td>
</tr>
<tr>
<td></td>
<td>peri-</td>
<td>around</td>
<td>peripheral, periscope</td>
</tr>
<tr>
<td></td>
<td>sub-</td>
<td>under</td>
<td>subschema, subtraction</td>
</tr>
<tr>
<td></td>
<td>super-</td>
<td>over</td>
<td>supersonic</td>
</tr>
<tr>
<td></td>
<td>trans-</td>
<td>across</td>
<td>transmit, transfer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chart of common prefixes of number</th>
<th>Prefix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bi-</td>
<td>two</td>
<td>binary</td>
</tr>
<tr>
<td></td>
<td>cent-</td>
<td>hundred</td>
<td>centenarian</td>
</tr>
<tr>
<td></td>
<td>dec-</td>
<td>ten</td>
<td>decimal</td>
</tr>
<tr>
<td></td>
<td>hex-</td>
<td>six</td>
<td>hexadecimal</td>
</tr>
<tr>
<td></td>
<td>mono-</td>
<td>one</td>
<td>monochromatic</td>
</tr>
<tr>
<td></td>
<td>multi-</td>
<td>many</td>
<td>multiplexor, multicoloured</td>
</tr>
<tr>
<td></td>
<td>oct-</td>
<td>eight</td>
<td>octal</td>
</tr>
<tr>
<td></td>
<td>penta-</td>
<td>five</td>
<td>pentagon</td>
</tr>
<tr>
<td></td>
<td>poly-</td>
<td>many</td>
<td>polysaccharide</td>
</tr>
<tr>
<td></td>
<td>quad-</td>
<td>four</td>
<td>quadruple</td>
</tr>
<tr>
<td></td>
<td>semi-</td>
<td>half</td>
<td>semicircle</td>
</tr>
<tr>
<td></td>
<td>sept(em)-</td>
<td>seven</td>
<td>September</td>
</tr>
<tr>
<td></td>
<td>tri-</td>
<td>three</td>
<td>triangle</td>
</tr>
<tr>
<td></td>
<td>uni-</td>
<td>one</td>
<td>unicellular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chart of common prefixes of time and order</th>
<th>Prefix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ante-</td>
<td>before</td>
<td>antecedent</td>
</tr>
<tr>
<td></td>
<td>post-</td>
<td>After</td>
<td>postdated, post-natal</td>
</tr>
<tr>
<td></td>
<td>pre-</td>
<td>before</td>
<td>prefix, preceding, precedent</td>
</tr>
<tr>
<td></td>
<td>prime-</td>
<td>First</td>
<td>primary, primitive</td>
</tr>
<tr>
<td></td>
<td>retro-</td>
<td>backward</td>
<td>retrograde, retroactive</td>
</tr>
</tbody>
</table>
Chart of other prefixes

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-, ab-</td>
<td>without, away</td>
<td>abiotic, abstinence</td>
</tr>
<tr>
<td>aqua-, hydro-</td>
<td>water</td>
<td>aquatic, hydrolytic</td>
</tr>
<tr>
<td>auto-</td>
<td>self</td>
<td>automatic</td>
</tr>
<tr>
<td>co-</td>
<td>together with</td>
<td>co-ordinate, co-operate</td>
</tr>
<tr>
<td>con-</td>
<td>together with</td>
<td>connect</td>
</tr>
<tr>
<td>geo-</td>
<td>earth</td>
<td>geology</td>
</tr>
<tr>
<td>hyper-, super-</td>
<td>exceeding</td>
<td>hypertension, superior</td>
</tr>
<tr>
<td>pro-</td>
<td>before, in advance, forward</td>
<td>programme, progress, procreation</td>
</tr>
<tr>
<td>vita-</td>
<td>life</td>
<td>vitalise</td>
</tr>
</tbody>
</table>

Suffixes

Definition
Suffixes are small parts of words that are added to a word to change the meaning. Suffixes are added to the end of a word.

Example Suffix
"paint" becomes "painter" when you add the suffix "-er" ("-er" means "person who does something," so "painter" means "the person who paints")

Explanation
Suffixes:
- are added to the end of words.
- can be added to nouns, verbs, adjectives, and adverbs.

Chart of noun-forming suffixes

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ance</td>
<td>state</td>
<td>performance</td>
</tr>
<tr>
<td>-dom</td>
<td>domain/condition</td>
<td>freedom</td>
</tr>
<tr>
<td>-ence</td>
<td>quality of</td>
<td>independence</td>
</tr>
<tr>
<td>-er, -or</td>
<td>a person who</td>
<td>programmer, operator, biographer</td>
</tr>
<tr>
<td>-er, -or</td>
<td>a thing which</td>
<td>compiler, processor, calculator</td>
</tr>
<tr>
<td>-ian</td>
<td>pertaining to</td>
<td>electrician</td>
</tr>
<tr>
<td>-ing</td>
<td>activity</td>
<td>multiplexing</td>
</tr>
<tr>
<td>-ion</td>
<td>action/state</td>
<td>conversion</td>
</tr>
<tr>
<td>-ism</td>
<td>condition/state</td>
<td>magnetism</td>
</tr>
<tr>
<td>-ist, -yst</td>
<td>a person who</td>
<td>analyst, typist</td>
</tr>
<tr>
<td>-ity</td>
<td>state, quality</td>
<td>electricity</td>
</tr>
<tr>
<td>-ment</td>
<td>state, action</td>
<td>measurement, requirement</td>
</tr>
<tr>
<td>-ness</td>
<td>condition of</td>
<td>readiness, cleanliness, happiness</td>
</tr>
<tr>
<td>-ship</td>
<td>condition/state</td>
<td>relationship, partnership</td>
</tr>
<tr>
<td>-tion, -ation</td>
<td>the act of</td>
<td>compilation</td>
</tr>
</tbody>
</table>
Chart of verb-forming suffixes

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ate</td>
<td>to make</td>
<td>automate, activate, calculate</td>
</tr>
<tr>
<td>-en</td>
<td></td>
<td>harden, widen, lengthen, shorten</td>
</tr>
<tr>
<td>-ify</td>
<td></td>
<td>simplify</td>
</tr>
<tr>
<td>-ize/-ise</td>
<td></td>
<td>computerize</td>
</tr>
</tbody>
</table>

Chart of adverb-forming suffixes

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ly</td>
<td>in the manner of</td>
<td>electronically, logically, comparably, slowly, quickly, automatically, carefully</td>
</tr>
</tbody>
</table>

Chart of adjective-forming suffixes

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>-able</td>
<td>capable of being</td>
<td>comparable</td>
</tr>
<tr>
<td>-al</td>
<td>having the quality of</td>
<td>computational, logical</td>
</tr>
<tr>
<td>-ar</td>
<td>having the quality of</td>
<td>circular, rectangular, cellular, regular</td>
</tr>
<tr>
<td>-ble</td>
<td>capable of being</td>
<td>divisible</td>
</tr>
<tr>
<td>-ed</td>
<td>having the quality of</td>
<td>computed, processed</td>
</tr>
<tr>
<td>-ful</td>
<td>characterized by</td>
<td>helpful, careful</td>
</tr>
<tr>
<td>-ic</td>
<td>having the quality of</td>
<td>magnetic, automatic</td>
</tr>
<tr>
<td>-ical</td>
<td>having the quality of</td>
<td>electrical</td>
</tr>
<tr>
<td>-ish</td>
<td>like</td>
<td>yellowish</td>
</tr>
<tr>
<td>-ive</td>
<td>having the quality of</td>
<td>interactive</td>
</tr>
<tr>
<td>-less</td>
<td>without</td>
<td>careless, meaningless</td>
</tr>
<tr>
<td>-ous</td>
<td>like, full of</td>
<td>dangerous, insidious, miraculous</td>
</tr>
</tbody>
</table>

Activities

Match each chemical suffix (COLUMN A) to its meaning (COLUMN B). The following suffixes indicate (put your answer in COLUMN C):

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1. ate</td>
<td>a. a chemical compound, for example hydrogen sulfide.</td>
<td>1. +...</td>
</tr>
<tr>
<td>2. ide</td>
<td>b. the presence of alcohol or phenol, for example glycol.</td>
<td>2. +...</td>
</tr>
<tr>
<td>3. in</td>
<td>c. the salt of an acid, for example sulfate.</td>
<td>3. +...</td>
</tr>
<tr>
<td>4. ite</td>
<td>d. the salt of an acid, for example sulfite.</td>
<td>4. +...</td>
</tr>
<tr>
<td>5. ol</td>
<td>e. a sugar, for example fructose.</td>
<td>5. +...</td>
</tr>
<tr>
<td>6. ose</td>
<td>f. a neutral compound, for example glycerin.</td>
<td>6. +...</td>
</tr>
</tbody>
</table>
AN ATOM APART

By Leslie Cargile

Have you ever walked through a cloud of gnats on a hot summer, only to have them follow you? No matter how you swat at them, or even if you run, they won’t leave you alone. If so, then you have something in common with an atom.

Atoms are the building blocks of molecules, which when combined, make up everything. From the smallest one-celled amoeba, to every person who has ever lived, to the largest and brightest stars in the sky, atoms are everywhere.

Even way back in the time of ancient Greece, they wondered about atoms. That’s where the word comes from, ancient Greece. The word A’tomos, when translated into English, means: something that cannot be divided any further. So what’s an atom look like? Up until very recently no one could say one way or another.

Technically we can’t see individual atoms, since there are no microscopes powerful enough. Since technology improves all the time, it may not be long before we can actually see a whole atom through a special microscope. Even though scientists cannot see atoms with microscopes, they have developed ways to detect them and learn about them.

Atoms are made up of three basic parts; protons, neutrons, and electrons. There is a core, or nucleus, and an electron cloud. The nucleus is made up of positively charged protons and neutral neutrons. The nucleus is held closely together by electromagnetic force.

The negatively charged electrons are bound to the nucleus, and zap around it in a cloud. Do you remember the cloud of gnats? The gnats would be the electrons zipping around you, the nucleus.

There are different ways atoms are classified. They can be classified into elements, like oxygen, carbon, or hydrogen. All of the elements known to man so far can be found on the periodic table. The number of protons an atom has decides the chemical element. The number of electrons defines the atom’s chemical properties, like its melting temperature and boiling point.

The study of atoms and tiny particles that are even smaller is called quantum mechanics. Scientists still have much to learn about atoms. Maybe you will enter the study of quantum mechanics and find a brand new element. Maybe they’ll even name it after you!

1 A very small flying insect that bites people and usually lives near water
2 If you swat something such as an insect, you hit it with a quick, using your hand or a flat thing
3 Is the smallest kind of living creature
4 to move with speed or force
READING COMPREHENSION

Tick the right option

1) What are atoms?
 a. tiny particles that make up all matter
 b. tiny particles that can only be seen with a microscope
 c. tiny particles that look like gnats
 d. particles that are so large they cannot be seen

2) What does the word A'tomos mean in ancient Greece?

3) Complete the graphic organizer.

![Diagram of Basic Parts of an Atom]

4) What is quantum mechanics?

5) If you wanted to find the chemical element of an atom, you would need to...
 a. know how many electrons it has
 b. know how many protons it has
 c. know its melting temperature
 d. see it with a microscope

6) The author begins this article by comparing a cloud of gnats to an atom. In this scenario, what do the gnats represent? What does the person walking through the gnats represent?
Vocabulary Crossword

Across
1. Positively charged parts of an atom
6. Negatively charged parts of an atom
7. Atoms are the building blocks for...
8. The number of electrons in atoms determine an element's ___ properties
9. Neutrally charged parts of an atom
10. A chart which lists all of the known elements

Down
2. Protons and neutrons are found in this part of an atom
3. Type of force that holds the nucleus of an atom together
4. Area of science that studies tiny particles like atoms
5. The word A'tomos comes from this language
Atoms are made up of three basic parts; protons, neutrons, and electrons. There is a core, or nucleus, and an electron cloud. The nucleus is made up of positively charged protons and neutral neutrons. The nucleus is held closely together by electromagnetic force.
CHEMICAL ELEMENTS

Elements make up everything in the world. Elements are the basic substances that we cannot divide into simpler substances. We group elements by the things they have in common – what they look like, how they react with other substances, if they conduct electricity, etc. We group elements into nine official groups. The element, “Hydrogen” is in a group by itself. It is different from all the other elements.

Hydrogen is a basic substance. 90% of all atoms in the universe are hydrogen atoms. Hydrogen atoms are the lightest atoms. Hydrogen got its name from the scientist Lavoisier. Lavoisier noticed that hydrogen atoms are always present in water. The word root “Hydro” means water. Therefore, it was intuitive to represent hydrogen with the letter H.

The second group is the alkaline-earth metals. You can find these elements in the earth’s crust. They react with water. This group of elements contains elements such as Calcium. Calcium is a basic substance found in substances like milk and chalk. It is a member of the second group of elements. Some other members of the second group are beryllium and magnesium.

The third group is the alkali metals. These elements react very strongly with water. They might even explode if they touch water. This group of elements contains elements such as Sodium. Sodium is an element found in table salt. Scientists represent sodium with the letters Na. Some other members of the third group are lithium and potassium.

The fourth group of elements includes metals. It is the largest group of elements. It includes iron, silver, gold, nickel, platinum and titanium. Elements in this group conduct electricity. They are hard and shiny. Members of this group are called the transition metals.

The fifth group of elements is the actinides. The elements in this group are radioactive metals. Most of the members of this group are synthetic elements. They are non-natural elements. They are made in special labs. Some members of this group are uranium and plutonium.

The sixth group of elements is the lanthanides. Some people call this group the rare–earth elements. Some people call them the inner–transition elements. These metals are silver or silvery–white. They conduct electricity very well. They tarnish when they come into contact with air.

The seventh group consists of the nonmetals. Carbon is a member of this group. Every living thing depends on carbon. Oxygen is also a member of this group. We take in oxygen and exhale carbon dioxide (which is a combination of carbon and oxygen) when we breathe.

The eighth group consists of the inert gases. They are called inert gases because they do not react easily with other substances. Most of these gases are present in lighting. When a current of electricity goes through neon, it glows red. Some other members of this group are argon and xenon. This group is sometimes called Group Zero or Group 0.
The ninth group consists of the poor metals. These metals are different from the metals in the fourth group because these metals are soft. These metals melt easily. They also mix well with other metals to form alloys. Both lead and aluminum are poor metals.

The last group consists of the semi–metals. The members of this group are like metals in some ways. They are also like non–metals in some ways. Some semi–metals are arsenic and bismuth.

Depending on which other substances touch them, they can be conductors of electricity or they can insulate, or protect, substances from electricity. Some scientists call the semi–metals “double metals” because of their structure.

READING COMPREHENSION

Tick the right option

1) What did Lavoisier notice about hydrogen?
 a. That it was always in water.
 b. That it was the lightest atom.
 c. That 90% of all atoms in the universe are hydrogen atoms.
 d. That it is a basic substance.
 e. All of the above are correct.

2) Where can calcium be found?
 a. In milk.
 b. In chalk.
 c. In the earth’s crust.
 d. All of the above are correct.
 e. Both A and B are correct.

3) What do the third, fourth, fifth, and sixth groups have in common?
 a. They all tarnish in the air.
 b. They are all present in water.
 c. They are all synthetic.
 d. They are all metals.
 e. They are all inert.

4) Why are uranium and plutonium grouped together?
 a. They are found in the earth’s crust.
 b. They are radioactive.
 c. They are metals.
 d. Both A and C are correct.
 e. Both B and C are correct.

5) Why are lead and aluminum grouped together?
 a. They mix with other metals.
 b. They are soft metals.
 c. They melt easily.
 d. All of the above are correct.
 e. Both A and C are correct.
VOCABULARY
1) The best synonym for intuitive is…
 a. Non-natural.
 b. Inclined.
 c. Automatic.
 d. Simple.
 e. Passionate.

2) Something synthetic is…
 a. Non-natural.
 b. Man made.
 c. Artificial.
 d. All of the above are correct.
 e. Both b and c are correct.

3) When you exhale, you …
 a. Breathe out.
 b. Take out.
 c. Consist of.
 d. Both a and b are correct.
 e. Both b and c are correct.

4) Inert means…
 a. non-reactive.
 b. radioactive.
 c. reactive.
 d. shiny.
 e. hard.

5) An alloy is…
 a. A combination of carbon and oxygen.
 b. A mixture of metals.
 c. A chemical laboratory.
 d. A soft metal.
 e. A non-metal.

6) The best synonym for insulate is…
 a. Melt.
 b. Protect.
 c. Conduct.
 d. Combine.
 e. Represent.

LANGUAGE Cause-and-Effect Linking Words

They are used in scientific writing to indicate cause and effect of actions or in experiments. They can also be used to compare ideas, contrast ideas and introduce examples. There are three main types of linking words: **conjunctions, transitions**, and **prepositions**.
1. Conjunctions

The most important conjunctions are because, as, since, and so. “Because”, “as”, and “since” introduce a cause; “so” introduces an effect. These are used to join two complete sentences (or independent clauses) together. They are often used like this:

⇒ First sentence conjunction second sentence.

For example:
I stayed at home because it was raining.

Or:

It was raining, so I stayed at home. (use a comma before “so”)

You can also reverse the order of the sentences with because, as, and since.

For example:
Because it was raining, I stayed at home. (use a comma between the first and second sentences) Note that this is not possible with “so”.

2. Transitions

The most important transitions are therefore, consequently, and as a result. All of these introduce an effect. These are used to join two complete sentences (or independent clauses) together. They are often used like this:

⇒ First sentence; transition, second sentence.
⇒ First sentence. transition, second sentence.

For example:
It was raining; therefore, I stayed home.

Or:

It was raining. Consequently, I stayed at home.

3. Prepositions

The most important prepositions are due to and because of. Both of these introduce a cause in the form of a noun phrase. They are often used like this:

⇒ Sentence due to noun phrase.
⇒ Because of noun phrase, sentence.

For example:
I stayed at home due to the rain.

Or:

Because of the rain, I stayed at home.
Activities

Tick the right answer

1) Many species of wildlife are becoming extinct, __________ the rainforests are being destroyed.
 a. therefore
 b. since
 c. so
 d. consequently

2) __________ logging provides jobs and profits, the government is reluctant to control it.
 a. So
 b. Consequently
 c. Due to
 d. Since

3) Hemp can be used to make paper, __________ it could reduce the need for logging.
 a. therefore
 b. so
 c. due to
 d. because

4) Hemp was grown throughout history __________ its versatility; it can be used to make many different things.
 a. due to
 b. because
 c. since
 d. as a result

5) Hemp is related to the marijuana plant; __________, it is illegal in many countries.
 a. so
 b. because
 c. due to
 d. as a result

6) Hemp cannot be used to produce marijuana, __________ its low THC content.
 a. because
 b. as
 c. because of
 d. consequently

7) Marijuana is less toxic than alcohol or tobacco. __________, some people believe it should be legalized.
 a. So
 b. Therefore
 c. Due to
 d. Because

8) __________ Canada has legalized hemp farming, we can expect to see pulp and paper produced from hemp very soon.
 a. Therefore
 b. Due to
 c. So
 d. As
Join the following sentences as follow:

1. Link the following two sentences using "because":
 o Hemp is related to the marijuana plant.
 o It is illegal.

2. Link the following sentences using "as a result":
 o In the last ten years, many BC valleys have been clearcut.
 o 142 species of salmon have become extinct.

3. Link the following sentences using "since":
 o Forestry is important to Canada.
 o It generates a lot of export income.

4. Link the following sentences using "therefore":
 o Some people believe marijuana should be legal.
 o Marijuana is less toxic than alcohol or tobacco.

5. Link the following sentences using "due to" (you will have to change one of the sentences into a noun phrase):
 o Many species in BC are threatened.
 o Logging is taking place.
ETHANOL

Ethanol (CH\textsubscript{3}CH\textsubscript{2}OH; which is also called ethyl alcohol, grain alcohol, and EtOH) is a clear, colorless liquid. It is a renewable biofuel made from starch and sugar–based crops like corn grain and sugar cane or from cellulosic feedstocks like grass, wood, or recycled newspapers. Ethanol is a high–octane biofuel which performs so splendidly in internal combustion engines that early automakers presumed it would be the world’s chief fuel.

American proponents of ethanol fuel highlight two principal advantages: its environmental impact and its energy security benefits. The adoption of ethanol reduces noxious emissions such as carbon monoxide (CO) and pollutants from internal combustion engines; hence, it is appreciably less deleterious to the environment than gasoline. Ethanol made from corn has been shown to reduce harmful emissions by up to 13%, whereas ethanol made from cellulosic materials reduces dangerous emissions by as much as 88%.

Ethanol is a renewable biofuel; in only six months a new crop can be grown, harvested, and converted to fuel, so it is profitable for rural crop–producing economies. In addition, it keeps 15 engines clean and can be used in gasoline engines with no modifications when combining gas with up to 10% ethanol. It can be used in specially modified vehicles called “flexible–fuel” or “flex–fuel” vehicles in concentrations of up to 85%. Gasoline combined with 85% ethanol is generally referred to as “E85.” Higher ratios of ethanol in the fuel mixture result in less reliance on fossil fuels, so there is less dependence on imports.

American opponents of ethanol fuel point to three disadvantages: its price fluctuations, its energy level, and its availability.

The price of ethanol fluctuates on a different cycle than gasoline; therefore, at times ethanol is more expensive than gasoline, and at times it is cheaper. Another drawback of ethanol is that it contains less energy per gallon than gasoline; even when it is cheaper per gallon than conventional fuel, it does not take the vehicle as far as a gallon of gas. A car’s fuel economy with ethanol can be expected to be 20–30% less than a vehicle which burns gasoline. So the occasional cheaper price is offset by the lower energy yields. In addition, ethanol is not as widely distributed as gasoline. It is readily available only in the Midwest; other areas have limited ethanol infrastructure.

READING COMPREHENSION

Tick the right answer

1) It can be inferred from the passage that which of these statements about ethanol is/are true?

a. Burning ethanol made from wood produces less CO than burning ethanol made from corn.

b. Burning ethanol made from grain produces less CO than burning gasoline.

c. Burning ethanol made from newspapers produces less CO than burning ethanol made from grass.
2) The author’s primary purpose is to
 a. Describe and define ethanol.
 b. Compare 2 types of ethanol.
 c. Support the adoption of ethanol.
 d. Explain advantages and disadvantages of gasoline.
 e. Explain advantages and disadvantages of ethanol.

3) In line 9, deleterious most closely means
 a. Dangerous, because it harms the environment less than gas.
 b. Beneficial, because it helps the environment less than gas.
 c. Splendid, because it performs less splendidly than gas.
 d. Unreliable, because it is less unreliable than gas.
 e. Expensive, because it is less expensive than gas.

WRITING Summarization Skills Techniques

A summary is a short statement or statements that give only the main points or core information of something excluding redundant information. Basically it reproduces main points of a speech, article, section, chapter or book.

How do I Summarize?
When summarizing, follow the guidelines listed below:
* Include only the main points of the original passage
* Do not worry about following the original order of ideas.
* Keep the length down to no more than half the length of the original.

Writing a summary essentially takes four steps:
1. Identify the main points of the passage. In some paragraphs, the main idea is expressed in the topic sentence, yet in others, it may not be explicitly stated at all. Additionally, a passage may contain one or more points that are vital to its meaning. These elements must be mentioned in your summary. However, you will not include all the details. Instead, only choose the most important.
2. Organize and present these main points in a coherent way. Be careful not to use the author's words or to follow the sentence structure of the original passage.
3. Make sure that you are faithful to the meaning of the source and that you have accurately represented the main ideas.
4. Cite appropriately and integrate the summary into the text effectively.

Example Summaries:

Original Passage:
Height connotes status in many parts of the world. Executive offices are usually on the top floors; the underlings work below. Even being tall can help a person succeed. Studies have shown that employers are more willing to hire men over 6 feet tall than shorter men with the same credentials. Studies of real-world executives and graduates have shown that taller men make more money. In one study, every extra inch of height brought in an extra $1,300 a year. But being too big can be a disadvantage. A tall,
brawny football player complained that people found him intimidating off the field and assumed he "had the brains of a Twinkie." (p. 301)

Let’s first identify the main points in the original passage.

Topic sentence: “Height connotes status in many parts of the world.”

Main point: “Even being tall can help a person succeed.”

Main point: “Executive offices are usually on the top”

Main point: “being too big can be a disadvantage”

For this example, we’ll look at multiple summaries. As you read the sample summaries below determine if the main points were included and if the unimportant points were discarded. Also check to see if both wording and sentence structure do not follow those of the original.

Summary A:

Throughout the world, being tall will lead to professional success. In fact, research shows that employers are more likely to hire taller men and to pay them more, as compared to shorter men with the same qualifications (Locker, 2003).

➢ [This summary is too brief. Further, it changes the meaning slightly, giving the impression that being tall guarantees success.]

Summary B:

In most countries, height suggests status. For instance, higher executives normally use top floors of office buildings. Further, research shows that men over six feet tall are more likely to be hired than those shorter than them but with the same qualifications. Taller men also receive greater incomes, possibly as much as $1,300 a year more than those only one inch shorter than them. However, as a tall and muscular football player points out, a disadvantage to being tall is that some individuals may perceive you as threatening or even dumb (Locker, 2003).

➢ [This summary is too long. Instead of focusing on the main points, it includes all of the details that are in the original passage.]

Summary C:

Though height may connote slowness to some people, in the business world, it is almost universally associated with success. For example, taller men are more likely to be hired and to have greater salaries. Further, those in top positions within a company are more likely to work on the top floors of office buildings (Locker, 2003).

➢ [This summary is the most effective. In addition to including all of the main points, it leaves out the unimportant details.]

50
Summarize the following passage:

The price of ethanol fluctuates on a different cycle than gasoline; therefore, at times ethanol is more expensive than gasoline, and at times it is cheaper. Another drawback of ethanol is that it contains less energy per gallon than gasoline; even when it is cheaper per gallon than conventional fuel, it does not take the vehicle as far as a gallon of gas. A car’s fuel economy with ethanol can be expected to be 20–30% less than a vehicle which burns gasoline. So the occasional cheaper price is offset by the lower energy yields. In addition, ethanol is not as widely distributed as gasoline. It is readily available only in the Midwest; other areas have limited ethanol infrastructure.
TEXT 2: SALT

Salt is a mineral that consists mostly of sodium chloride (NaCl). It is an essential nutrient for animals, yet it is toxic to most plants. In her novel Tongue, author Kyung Ran Jo recounts this legend about salt: “A long time ago, a princess told the king, ‘I love you as much as I love salt.’ Believing it to be an insult, the king banished his daughter from his kingdom. But after a long time, the king realized the value of salt and the depth of his daughter’s love for him.”

Saltiness is one of the basic tastes perceived by the tongue, making it an esteemed and ubiquitous food flavoring. It also “retains vegetables’ vivid colors when parboiling, removes astringency from salad greens, freezes ice cream, quickly cools boiling water, maintains the freshness of cut flowers, removes stains on clothing, alleviates pain in your neck, is an ingredient in soap,” according to Jo. Darlene McFarlane in her article “15 Household Uses for Table Salt” recommends testing an egg’s freshness by placing it in a cup of salt water. An egg that floats is not fresh. Ants will not venture onto a salt-covered surface, according to McFarlane, so she suggests sprinkling it on windowsills and in doorways to repel them from your residence.

Salt’s historical distinction lies not so much in its taste or any of its aforementioned amazing talents, however, as in its suitability as a preservative. Salt has been used as a food preservative for centuries. One of the oldest documented salt works is the Xiechi Lake near Yuncheng in Shanxi, China. Salt was harvested from its surface as early as 6000 B.C. Salt, along with salted birds and salt fish, was unearthed with funereal offerings in ancient Egyptian tombs from the third millennium B.C. Less than half a century later, Egypt instituted exportation of salt fish to the Phoenicians, who in turn traded Egyptian salt fish with their commercial partners throughout North Africa, engendering the establishment of wide-ranging trade associations throughout the Mediterranean region. Similarly, in the first millennium B.C., Celtic people exchanged salted meat for wine and other luxury goods from ancient Greece and Rome. The wide expanse of the Celtic salt trade is exemplified by the shared Celtic, Greek, and Egyptian root word for salt, hal, which is iterated in the names of salt works throughout the region: Halle and Schwäbisch Hall in Germany, Halych in Ukraine, and Galicia in Spain.

Throughout history, salt has been deemed a precious commodity. In fact, the word “salary” is derived from the Middle English salaire, from the Latin salarium, which means a payment made in salt (sal) or for salt, from salarius which means “pertaining to salt.” Many historians agree that the Latin word salarium is related to salt and soldiers, but stress that the original association is unclear. Some surmise that soldiers were remunerated in salt. Some postulate that the word soldier itself is derived from the word for salt. Even today, a hardworking employee might be said to be “worth his salt” or might be commended for “soldiering on.”
READING COMPREHENSION

Tick the right answer

1) The author’s primary purpose is to
 a. Relate the history of salt.
 b. Describe the value of salt.
 c. Enumerate the myriad uses of salt.
 d. Discuss the areas where salt was traded.
 e. Explain the etymology of the word “salt.”

2) In line 21, engendering most closely means
 a. Causing.
 b. Encountering.
 c. Requiring.
 d. Restricting.
 e. Stopping.

3) The function of the passage’s final sentence is to
 a. Summarize the main uses of salt discussed in the passage.
 b. Explain the etymological roots of several city names.
 c. Repeat the fact that roman soldiers were paid in salt.
 d. Illustrate the modern uses of salt.
 e. Emphasize the value of salt.

TRANSLATION

Translate the following passage into French

Salt is a mineral that consists mostly of sodium chloride (NACl). It is an essential nutrient for animals, yet it is toxic to most plants. In her novel Tongue, author Kyung Ran Jo recounts this legend about salt: “A long time ago, a princess told the king, ‘I love you as much as I love salt.’ Believing it to be an insult, the king banished his daughter from his kingdom. But after a long time, the king realized the value of salt and the depth of his daughter’s love for him.”

Text 3:

Can Ocean Desalination Solve the World's Water Shortage?

Environmentalists concerned about long-term effects of desalination. By Larry West

Fresh water scarcity is already posing major problems for more than a billion people around the world, mostly in arid developing countries. The World Health Organization predicts that by mid-century, four billion of us—nearly two-thirds of the world’s present population—will face severe fresh water shortages.

With human population expected to balloon another 50 percent by 2050, resource managers are increasingly looking to alternative scenarios for quenching the world's growing thirst. Desalination—a process whereby highly pressurized ocean water is pushed through tiny membrane filters and distilled into drinking water—is being held forth by some as one of the most promising solutions to the problem. But critics point out it doesn't come without its economic and environmental costs.

According to the non-profit Food & Water Watch, desalinated ocean water is the most expensive form of fresh water out there, given the infrastructure costs of collecting, distilling and distributing it. The group reports that, in the U.S., desalinated water costs at least five times as much to harvest as other sources of fresh water. Similar high costs are a big hurdle to desalination efforts in poor countries as well, where limited funds are already stretched too thin.

On the environmental front, widespread desalination could take a heavy toll on ocean biodiversity. "Ocean water is filled with living creatures, and most of them are lost in the process of desalination, even some fairly large organisms…part of the hidden cost of doing business," says Sylvia Earle, one of the world's foremost marine biologists and a National Geographic Explorer-in-Residence.

Earle also points out that the very salty residue left over from desalination must be disposed of properly, not just dumped back into the sea. Food & Water Watch concurs, warning that coastal areas already battered by urban and agricultural run-off can ill afford to absorb tons of concentrated saltwater sludge.

Food & Water Watch advocates instead for better fresh water management practices. "Ocean desalination hides the growing water supply problem instead of focusing on water management and lowering water usage," the group reports, citing a recent study which found that California can meet its water needs for the next 30 years by implementing cost-effective urban water conservation. Desalination is "an expensive, speculative supply option that will drain resources away from more practical solutions," the group says.

Despite such arguments, the practice is becoming more common. Ted Levin of the Natural Resources Defence Council says that more than 12,000 desalination plants already supply fresh water in 120 nations, mostly in the Middle East and Caribbean. Environmental advocates may just have to settle for pushing to "green" the practice as much as possible in lieu of eliminating it altogether.
READING COMPREHENSION

Answer the following questions:

1. What are the pros and cons of ocean desalination?

2. What are the main arguments claimed by Food & Water Watch?

3. How could desalination influence the oceans and the organisms that live in there?

4. Where is the area that supports and uses the desalination plants?

5. How do you understand the last sentence of the article? Is it derogatory, complimentary or neutral towards the environmental activists?

Match the following words with their definitions:

- Scarcity =
- Arid =
- Quenching =
- Desalination =
- Hurdle =
- Sludge =
- Speculative =

something that makes an achievement difficult
- to relieve or satisfy with liquid
- a very small supply
- relating to a financial
- very dry
- a soft, thick material that is produced in various industrial processes

WRITING Making a presentation

Speaking in public in a foreign language is very difficult. However, we are lucky when we do this because there are many standard phrases that we can use to structure and construct our presentation. This means that we can concentrate on the content of the presentation, and communicating what we need to say. The following are some useful phrases that you can use when you make your presentation.

Remember: when you give a presentation there are three main parts to the presentation:
- The Introduction
- The Main Body
The Summary

Introduce yourself
Good morning/afternoon Ladies and Gentlemen, my name is X from Y (name of company, country etc) ...

Introduce the topic
Today/This morning I'm going to talk about/I'd like to talk about ...
The aim of my presentation is to …
I'd like to tell you a little about ...

List what the stages of your presentation are
I've divided my presentation into X parts.
First, I'd like to talk about ...
Second, ...
Then, (I'll move on to/consider/deal with/focus on) ...
After that, ...
Next, ...

Introducing a new section
Let's move on to ...
Moving on to ...
This leads to ...
Let's turn to ...
Finally ...

Moving backwards and forwards
As I mentioned earlier, ...
I'll be talking more about this later.
I'll return to this point.

Using visual information
This slide/diagram/transparency shows ...
If you look at this graph it shows that …
What is interesting here is ...
I'd like to draw your attention to ...

Replied to difficult questions (when you don't have an answer or don't want to answer a question)
That's a good point.
I'll come to that later if you don't mind.
I'm afraid I don't have that information to hand.
I'm afraid I'm not the right person to answer that.

How long will you speak for and do you want to answer questions?
I'm going to speak for about X minutes/hours/days.
Please keep any questions until the end.
If you have any questions please feel free to interrupt.
I'd be happy to answer any questions at the end.

Summing up
So, to summarize, …
In conclusion, ...
That concludes my talk. If you have any questions I'll do my best to answer them.